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Bridging the microscopic and macroscopic theories for light reflected
from disordered plane-parallel dielectric slabs

S. Menon, Q. Su, and R. Grobe
Intense Laser Physics Theory Unit and Department of Physics, Illinois State University, Normal, Illinois 61790-4560 USA

~Received 14 February 2003; published 28 October 2003!

For a system of randomly arranged plane-parallel dielectric layers with randomly varying index of refraction
and width, we compare the reflection coefficient derived from the Maxwell equations with that of the Boltz-
mann theory. For a strictly monochromatic field this coefficient is an oscillatory function of the laser frequency.
We show how suitable frequency or ensemble averaging permits a comparison of the two theories. The
calculation of the usual Boltzmann scattering coefficient from microscopic parameters can be improved to
permit a better agreement with the exact Maxwell data.
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I. INTRODUCTION

The propagation of electromagnetic fields through hig
scattering dielectric media is a subject of interest in ma
areas of science@1–3#. There is a wide variety of applica
tions in meteorology, oceanography, medical imaging a
therapy, astrophysics, radar transmission and recep
semiconductor technology, and photonic devices. The wa
medium interaction can be described by microscopic or m
roscopic theories@4#. The precise relationship between the
approaches, however, remains an open question@5#.

The microscopic description is exact and requires a
tailed knowledge of the medium, such as the location,
shape, and the index of refraction of each scatterer. Elec
magnetic waves propagating through a microscopic med
of random scatterers can be analyzed rigorously using
Maxwell equations. These equations incorporate inter
ence, diffraction, and polarization effects@5#. However, this
approach is feasible numerically only for either reduced
mensional systems such as those with specific symmetrie
small systems that consist of a limited number of scatter

The macroscopic description is provided by the Bol
mann ~radiative transport! equation. It is regarded in man
areas of science as one of the most fundamental descrip
of the transport properties of particles in highly scattering
collisional media. In areas such as astrophysics and nuc
physics, the Boltzmann equation models the average mo
of real particles such as neutrons@6,7#. In medical optics, the
Boltzmann equation models the propagation of electrom
netic radiation through highly scattering biological materi
@8–12#.

There are certain length scales at which the Boltzm
theory is insufficient because some wave or diffraction
fects are not negligible, but the system is too complicated
solve the corresponding Maxwell equations. It is this int
mediate regime for which there is apparently no theoret
description available. A major research goal over the last
years has been to find an appropriate description for
mesoscopic regime. In this respect, it is important to no
that so far the Boltzmann equation can be derived only fr
phenomenological considerations, and its rigorous deriva
even from the basic scalar wave Maxwell equation is
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available@4,5#. As a consequence, it is not clear how to rela
the macroscopic scattering coefficient to the large numbe
microscopic variables, such as the spatially fluctuating ind
of refraction. Some progress has been reported in this re
in investigating the special case of stationary and homo
neous free fields in the absence of any turbid medium@13#.

Therefore a better understanding of the relationship
tween the Boltzmann and Maxwell theories is importa
Without too much loss of generality, this problem can
approached using a simple model system, for which the
lutions to the Boltzmann and Maxwell equations are ava
able. In such a one-dimensional system the light is restric
to scatter only in the forward and backward directions.
recent work we tried to connect the Boltzmann with t
Maxwell description and found that the transmission coe
cient for an ensemble average can be related to the pre
tions of the Boltzmann theory@14,15#. The present work is
another step toward this long term goal.

In this work we will show that the Maxwell and Boltz
mann equations for the one-dimensional system can
brought into a similar form. These equations have the adv
tage that perturbative but fully analytical solutions may
compared. We will show that an average of the Maxwell d
over a suitable range of the laser frequency leads to a re
tion coefficient that is similar to the one predicted by t
Boltzmann equation.

II. FORMAL ANALOGY BETWEEN THE MAXWELL
AND BOLTZMANN EQUATIONS

Let us first discuss how the time and spatial evolution o
laser field through a one-dimensional highly scattering m
dium can be described by the Maxwell as well as the Bo
mann theories. We will see that these seemingly differ
types of equations can be brought into a similar form if
written in terms of coupled equations relating the forwa
and backward propagating contributions of the fields.

We start the discussion with the Maxwell theory. Th
Maxwell equations for a position-dependent nonmagnetic
electric medium@with permittivity «~r ! and permeabilitym0]
are given by

“•«~r !E50, ~2.1a!
©2003 The American Physical Society14-1
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“•B50, ~2.1b!

“3E52]B/]t, ~2.1c!

“3B5«~r !m0]E/]t. ~2.1d!

If the field is normally incident on a medium whose refra
tive index varies only along thex direction, these equation
take the forms

]Bz~x,t !

]t
52

]Ey~x,t !

]x
, ~2.2a!

«~x!
]Ey~x,t !

]t
52

1

m0

]Bz~x,t !

]x
, ~2.2b!

]By~x,t !

]t
5

]Ez~x,t !

]x
, ~2.2c!

«~x!
]Ez~x,t !

]t
5

1

m0

]By~x,t !

]x
, ~2.2d!

where Ey,z and By,z are the transverse components of t
electric and magnetic fields. Full solutions can be obtain
only numerically, using either time-dependent methods
initial value problems@16# or other techniques for boundar
value problems@17#.

The model medium whose optical propagation proper
we will examine in this work consists of a series ofN loss-
less dielectric slabs arranged along the positivex axis, each
of which is centered at positionxj , has a widthwj , and an
index of refractionnj ( j 51, . . . ,N). The numerical values
for the specific parameters were chosen randomly in cer
ranges. The locations of the centers of the slabs,xj , were in
the range2d/21 jD ,xj, jD 1d/2, whereD denotes the
average distance between the centers of thej th and (j
11)th scatterers. Exploring the scale invariance of the M
well equations, we will measure from now on all numeric
values of the length in units of the distanceD. The index
variation was chosen in the range 1.3,nj,1.5 and the slab
width wj was in the range 0.1,wj /D,0.3. Each particular
realization of theN layers is characterized by the set of 3N
random numbers$x,w,n%. For simplicity, we neglect the ho
mogeneous dispersion arising from a frequency-depen
index of refraction; however, due to the spatial depende
of the index of refraction, the total reflection depends ve
strongly on the frequency.

We assume that the incoming electromagnetic field trav
perpendicular to the interfaces. This allows us to analyze
dynamics strictly in one dimension where the scatter
angle is 0° or 180°, and we consider the electric field vec
parallel to the slab-vacuum interface. Due to this symme
the problem can be investigated numerically using the tra
fer matrix approach by matching electric fields at the int
faces@18#.

The reflection coefficientR(v,$x,w,n%) as a function of
the laser frequencyv is shown in Fig. 1. It is an extremel
oscillatory function of frequency and the reflection is ch
acterized by many interferences, as is apparent from
04661
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graph. Even though there is an overall tendency of the m
dium to become more reflective with increasing laser f
quency, the large size of the fluctuations indicates the imp
tance of the interferences between the individual scatte
for strictly monochromatic fields. The inset resolves the
rapid oscillations on a very fine frequency range. It is qu
remarkable that an increase of the frequency~in units of
c/D) from v59.9212 ~with R50.9788) by only Dv/v
50.3% tov59.9476 (R50.0055) changes the medium from
nearly opaque to nearly transparent.

In order to compare the Maxwell equations with the Bo
zmann equation, it is advantageous to introduce the two a
iliary fields @19#

E~x,1,t ![
1

2
$A«~x!Ey~x,t !1Bz~x,t !/Am%, ~2.3a!

E~x,2,t ![
1

2
$A«~x!Ey~x,t !2Bz~x,t !/Am%. ~2.3b!

The wave equations~2.2a! and~2.2b! are equivalent to a se
of coupled equations@20,21#

S v~x!
]

]x
1

]

]t DE~x,1,t !

52
1

2

dv~x!

dx
$E~x,1,t !1E~x,2,t !%, ~2.4a!

S v~x!
]

]x
2

]

]t DE~x,2,t !

52
1

2

dv~x!

dx
$E~x,1,t !1E~x,2,t !%, ~2.4b!

FIG. 1. The total reflection coefficient for a single medium co
sisting of N5500 dielectric layers with random width, index o
refraction, and location as a function of the frequency. The f
quency is displayed in units ofc/D. The inset shows the small sca
oscillations.~The random variables were uniformly distributed
the rangesxj5 j D 6d/2, nj51.460.1, wj50.0160.005,d5D.)
4-2
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where v(x)[@m0«(x)#21/2 must be interpreted as th
position-dependent velocity. The form of the generator
Eqs. ~2.4! suggests thatE(x,1,t) and E(x,2,t) represent
fields propagating along the positive and negativex direc-
tions, respectively. E2(x,1,t) and E2(x,2,t) correspond
to the right and left going photon fluxes, respective
One can also show that E2(x,1,t)1E2(x,2,t)
5(1/2)@«(x)Ey

2(x,t)1(1/m)Bz
2(x,t)# is the energy density

andv(x)@E2(x,1,t)2E2(x,2,t)#5(1/m)Ey(x,t)Bz(x,t) is
the Poynting vector.

Let us now show that the Boltzmann equation can
brought into a similar form. In general, this equation mod
the collection of many individual scatterers only by its av
age properties. In the absence of absorption, only three
rameters characterize a scattering medium: the propaga
speed in between two scattering eventsc, the scattering co-
efficient ms ~the inverse of the scattering length!, and the
scattering phase functionp(V,V8). The last is the condi-
tional probability that an incoming particle associated w
direction V is scattered into the directionV8. The three-
dimensional Boltzmann equation~radiative transfer equa
tion! @1# is given by

S 1

c

]

]t
1V•“ D I ~r ,V,t !

5msE dV8p~V,V8!I ~r ,V8,t !2msI ~r ,V,t !, ~2.5!

where I (r ,V,t) represents the local radiation flux dens
propagating in theV direction. The Boltzmann equation fo
a one-dimensional medium can be obtained by restricting
scattering phase function to permit only forward and ba
ward scattering@22#:

p~V,V8!5
1

4p
~12g!d~cosq11!

1
1

4p
~11g!d~cosq21!, ~2.6!

where cosq[V•V8. The anisotropy factorg is defined as
the average cosine of the scattering angleq, g
[*dV8p(V,V8)cosq. With this bidirectional phase func
tion, the Boltzmann equation can be expressed as a sim
coupled set of differential equations in spacex and timet:

S 1

c

]

]t
1

]

]xD I ~x,1,t !52mI ~x,1,t !1mI ~x,2,t !,

~2.7a!

S 1

c

]

]t
2

]

]xD I ~x,2,t !5mI ~x,1,t !2mI ~x,2,t !,

~2.7b!

where we have definedm[ms(12g)/2 as the effective scat
tering coefficient and whereI (x,6,t) represents the photo
flux along the positive and negativex directions. These two
equations have an obvious interpretation:I (x,1,t) couples
to I (x,2,t), and vice versa. By eliminating the diagon
04661
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coupling one can derive a useful iterative scheme in wh
the nth order solution corresponds directly to the phot
paths that have scatteredn times@23#. In this formalism, the
parameterm is directly related to the reversal probability.

The reflection probability in the steady state (]/]t50),
for a medium of lengthL, can be obtained from Eqs
~2.7! using the boundary conditionsI (x50,1)51 and I (x
5L,2)50. The reflection coefficientI (x50,2)5mL/@1
1mL# is the main prediction of the Boltzmann theory@14#,
and we will discuss its implications in Sec. IV.

Let us now comment on the formal similarity between t
set of two coupled equations according to the macrosco
and microscopic theories of Eqs.~2.4! and Eqs.~2.7!, respec-
tively. Both equations are linear and have nearly identi
spatiotemporal generators~left hand sides!, except that the
velocity v(x) is a true microscopic quantity rapidly changin
on the smallest length scale. However, the coupling matr
on the right hand side are different. In the Maxwell equ
tions, the coupling strength between the right and left go
fields is given by the spatial gradient of the veloci
(1/2)dv(x)/dx. We also note that the coupling matrix is re
and symmetric with eigenvalues 0 and2(1/2)dv(x)/dx,
whereas the corresponding 232 coupling matrix for the
Boltzmann theory@Eqs.~2.7!# is nilpotent with the degener
ate eigenvalues 0.

The different structures of the two propagators have c
sequences with respect to the nature of the iterative term
the Maxwell theory, the fieldsE(x,1,t) and E(x,2,t) can
take positive and negative values, and therefore contribut
associated withnth order scattering can destructively inte
fere with lower orders@19#. In the Boltzmann theory, the
structure of the propagator preserves the sign of the two
diation flux densitiesI (x,1,t) and I (x,2,t), and therefore
all nth order scattering contributions add up in an accum
lative way.

III. FREQUENCY AND ENSEMBLE AVERAGE
OF THE MAXWELL SOLUTION

Let us now discuss how two different averaging schem
can convert the oscillatory reflection coefficient displayed
Fig. 1 for a single medium into a smooth function, whic
then permits a direct comparison with the prediction of t
Boltzmann equation. In addition to the erratic frequency d
pendence, the total reflection coefficient for specific reali
tion of a single random medium is a function of a set of 3N
random numbers$x, w, n%. In order to eliminate those aspec
of the response that vary from specific realization to reali
tion, we can construct a more universal reflection coeffici
by averaging over all microscopic degrees of freedom
cording to their probability distribution functionr($x,w,n%):

^R~v!&[FP j
NE dxjE dwjE dnj G

3r~$x,w,n%!R~v,$x,w,n%!. ~3.1!

We have performed this ensemble average numerically
computing the average reflection coefficient from 5000 d
ferent random media, each characterized by 33500 indepen-
4-3
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dent random numbers. The result of this quite CPU cons
ing task is displayed in Fig. 2. Comparing with the graph
Fig. 1, we see that all the quasierratic oscillations charac
istic of a single medium have been removed, and the gr
suggests that it could even match the average behavior o
reflection coefficient with respect to the frequency.

So far the reflection was calculated for a strictly mon
chromatic input laser field. In order to compute the respo
of a quasimonochromatic field with a frequency widthd
around the center frequencyvc , we can average the reflec
tion for a single random medium over a small frequen
range if the phases of the complex reflection amplitudes v
sufficiently fast with frequency:

R~vc ,d,$x,w,n%![E dv r~v,vc ,d!R~v,$x,w,n%!.

~3.2!

Please note that this quantity is~at least formally! still a
function of all 3N parameters$x,w,n% and therefore it could
vary from medium to medium. To keep our analysis
simple as possible, we have assumed that the frequencie
uniformly distributed, such thatr(v,vc ,d)5@u(v2vc
1d/2)2u(v2vc2d/2)#/d, whereu~¯! denotes the Heavi
side unit step function. The frequency avera
R(vc ,d,$x,w,n%) was superimposed on the graph on Fig.
Two important observations are in order. First, the numer
data suggest that the frequency averaging removes the e
oscillations characteristic of a single random medium. S
ond, it turns out that for the range of parameters discus
here, the two curvesR(vc ,d,$x,w,n%) and ^R(v)& are re-
markably similar—if not identical—to each other.

This numerical observation opens the door to finding a
lytical solutions to the universal function̂R(v)& and also
provides the key for a comparison with the Boltzmann the
as we will discuss in Secs. IV and V. In other words, t

FIG. 2. The frequency and ensemble average of the total re
tion coefficient for a medium of the type of Fig. 1. The frequency
displayed in units ofc/D. The inset shows the two averaged grap
together with the small scale oscillations characteristic of a sin
medium. The dotted line in the graph represents the ensemble
eraged reflection coefficient and the dashed line the frequency
eraged result.~Same random parameters as in Fig. 1.!
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complicated 3N averages can be replaced by an average o
a single parameter, the frequencyv. This observation can
become relevant for future analytical work on bridging t
microscopic and macroscopic theories on the level of
corresponding equations of motion, as we will outline
Sec. V.

In order to obtain some analytical insight into this surpr
ing similarity and to construct an approximate but analyti
form of the ‘‘universal’’ reflection coefficient, we have con
structed the first order iterative solution to the Maxwell equ
tions. As we will show below, this solution is valid for thos
frequencies for which single scattering is sufficient to d
scribe the overall reflected light. In other words, this is t
regime in which typically the total reflection coefficient
less than 5%. The data in Fig. 3 suggest that we would
pect the single scattering approximation to hold for frequ
cies in the range 0,v,2.3c/D.

Solving the Maxwell equations~2.4! in the frequency
regime (]/]t5 iv) with the boundary conditionsE(x50,
1,v8)5d(v2v8) and E(x5L,2,v8)50, we obtain the
following amplitude for the reflected light which has expe
enced only a single scattering event:

E~1!~x50,2,v![r ~1!~v!

5E
0

L

dx v8~x!/v~x!

3expF2 i2vE
0

x

dx8/v~x8!G . ~3.3!

The integral in the exponent*0
xdx8/v(x8) is the time a pulse

of velocity v(x) takes to travel fromx50 to x without scat-
tering, such that the exponent in Eq.~3.3! corresponds to the
phase that the reflected light obtains after having trave

c-

le
v-
v-

FIG. 3. The frequency and ensemble average of the total re
tion coefficient for a simplified random medium based on the a
lytical solutions shown in the Eqs.~3.5! and ~3.6!. For comparison
the exact reflection coefficient curve is also plotted. The freque
is shown in units ofc/D. The scatterers were uniformly distribute
in the rangesxj5 j D 6D/2. All 500 scatterers have an indexn
51.4 and a widthw50.01D.
4-4



u-
th
’s

-

r
to
s
an
re

-
n

m

e

s

cy
-

m

-

io
e

li

is

ted

o-
ry so
he

ffi-
.1

al
ble
ies

l-

an
gh.
of
tal

cy
o

b-
re-

cy
of
on

e-
rall
ver,
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from x50 to x and back tox50. The termv8(x)/v(x) can
be interpreted as a reversal probability at locationx, as dis-
cussed above.

In order to obtain simple and illustrative analytical sol
tions without any loss of generality, let us assume that
width of each slabwj is very small, such that the medium
index of refraction n(x)511( j 51

N (nj21) @u(x2xj

1wj /2)2u(x2xj2wj /2)# can be approximated byn(x)
511( j 51

N (nj21)weff,jd(x2xj). Let us also freeze the indi
ces of refractionnj[n and the widthswjww, while leaving
the center positions of the slabs randomly located atxj
5 jD 1j, wherej is a uniformly distributed random numbe
in the range2d/2,j,d/2. These assumptions turn out
be not too restrictive, as the basic structure of the graph
Figs. 1 and 2 is mainly due to the positions of the slabs
less due to the fluctuations in the width or the index of
fraction.

The effective ‘‘width’’ weff can be related to the true thick
nessw of each slab if we equate the reflection coefficie
for a single slab with the small but finite widthw, given
by (n221)2(vw/c)2/4, with the reflection coefficient for
the d-function scatterer, according tour (1)(v)u25(n
21)2(weffv/c)2. We obtain the relationweff5w(n11)/2.

Using the above expression forv(x)5c/n(x), the inte-
gral ~3.3! can be calculated, and we obtain the simple for

r ~1!~v,b,$x%!5v2b2/c2(
j 51

N

exp@2iv~xj1 j b!/c#,

~3.4!

where we have definedb[(n21)weff5w(n221)/2. This so-
lution permits us now to calculate the ensemble averag
well as the frequency average fully analytically.

The ensemble average defined in Eq.~3.1! can be ob-
tained as

^R~1!~v!&5b2v2/c2$N@12sin2~vd/c!/~vd/c!2#

1sin2~vd/c!sin2
„v~D1b!dN/c…/@vd/c

3sin„v~D1b!d…/c#2%. ~3.5!

This universal reflection coefficient reveals several intere
ing features. Four clearly distinct frequency regimes~in units
of c/D) can be obtained from Fig. 3. In the small frequen
limit ( v,1.2631023) the reflected intensity grows qua
dratically with the frequency; the next regime (1.2631023

,v,0.251) is characterized by oscillations with equal a
plitude ('1.5831025) and a frequency difference from
peak to peak of 0.006. In the regime 0.251,v,3.98, the
intensity grows initially with the fourth power of the fre
quency; and for large frequencies~3.98.v! the intensity
again grows quadratically with the frequency.

The small and large frequency limits suggest a transit
from a fully coherent to an incoherent response of the m
dium. In the small frequency limit@v(b1D)N/c,0.1#, we
obtain that the total reflected intensity^R(1)(v)& is given by
the square of the sum of the individual electric field amp
tudes associated with reversals at locationsxj , ^R(1)(v)&
04661
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5v2b2N2/c2. In this limit the wavelength 2pc/v is larger
than the entire medium, and the total reflected intensity
identical for any random arrangement ofN scatterers.

In the large frequency limit (vd/c@1), we obtain that
the total reflected intensitŷR(1)(v)& is given by the sum of
the squared individual electric field amplitudes associa
with reversals at locationsxj , ^R(1)(v)&5v2b2N/c2. In this
limit the wavelength is small enough that the individual l
cations of the scatters can be resolved, but the phases va
rapidly from scattering location to scattering location that t
coherent contributions inv2b2/c2( j 51

N ( j 851
N exp@2iv@(xj

2xj8)1(j2j8)b/c# average out to zero forj Þ j 8 and only the
diagonal terms (j 5 j 8) contribute.

The two intermediate frequency regimes are more di
cult to interpret. The oscillatory regime requiring 0
,Nvd/c and vd/c,0.1 is described by ^R(1)(v)&
5$b/(b1D)sin@v(b1D)N/c#%2. We should note that this
oscillation frequency is identical for each individu
medium. In other words, it is independent of the ensem
averaging procedure. For even larger frequenc
(0.1,vd/c) the dependence ^R(1)(v)&5b2v2N@v2

2sin2(vd/c)/d2#/c2 is accurate. The fourth power regime fo
lows trivially from this expression, ^R(1)(v)&
5(1/3)b2d2v4/c4.

As we have mentioned above,^R(1)(v)& is a valid ap-
proximation only if higher order scattering contributions c
be neglected, i.e., the reflection coefficient is small enou
In order to examine the frequency regime of validity
^R(1)(v)&, we have compared it in Fig. 3 to the exact to
reflection intensity ^R(v)& ~containing all orders!. The
agreement with the analytical curve is valid in all frequen
regimes up to v52.3c/D and roughly corresponds t
^R(v)&<5%, as suggested above.

Let us now analyze the first order reflected intensity o
tained from averaging over a range of frequencies. The
sulting analytical expression is given by a double sum,

R~1!~vc ,d,$x%!

[E dv r~v,vc ,d!ur ~1!~v,b,$x%!u2

5v2b2N/c21v2b2/c2

3(
j 51

N

(
j 51,j 8Þ j

N

exp@2ivc@~xj2xj8!1~ j 2 j 8!b/c#

3sin$d@~xj2xj8!1~ j 2 j 8!b/c#%/$d@~xj2xj8!

1~ j 2 j 8!b/c#%. ~3.6!

In Fig. 3 we have graphed this function for the frequen
width d5vc/10. The agreement with the analytical form
Eq. ~3.5! is superb for all frequencies. We should menti
that, even though the reflection coefficientR(1)(vc ,d,$x%)
does depend on the frequency widthd, for a very small width
the fine oscillations characteristic of a single random m
dium are reconstructed, and for a very large width the ove
important frequency dependence is averaged out. Howe
4-5



ic
th

e
e
In

th

n
nt
ilit
e
ed
ffi
of
i

di
wo
th

s

ll

t
is
is
p
th
r-

tu
th
fo
l

th
.
t

io

is

n
tte
re

e

nt
pic
rage
s

be

le
her

tz-
tive
d
the

e-
ly
ing

g
a
ing
d

a
ent

ient
t

e-
ec-
des

oef-
of

ble

al

e
by

MENON, SU, AND GROBE PHYSICAL REVIEW E68, 046614 ~2003!
we found that there is an intermediate regime, for wh
the results for all practical purposes do not depend on
width d.

We should point out that the close relationship betwe
the frequency and ensemble average of the reflection co
cient could be interpreted as a weak form of ergodicity.
statistical mechanics@24#, a random processz(t) is called
stationary if the ensemble average of any function of
random variablesz(t1),z(t2),...,z(tN) is invariant under a
time translation. As a special case, the autocorrelation fu
tion depends only on the difference of the two argume
t22t1 for a stationary process. Consequently, the probab
distribution for the random numberz cannot depend on th
variable t. A stationary random process is generally call
ergodic, if the autocorrelation function decays to zero su
ciently rapidly with increasing time. Then all realizations
the random process look somewhat similar and differ only
detail, and a suitable time average limT→`(1/T)*2T/2

T/2 dt¯ is
identical to the average over all possible realizations~en-
semble average! ^¯&.

How do these mathematical definitions apply to our
electric medium? It is important to note that we have t
different random processes involved. The first one is
fluctuating index of refractionn(x), which is a function of
the positionx and varies randomly for different realization
of the medium. For the simplest case of an indexn(x) that
jumps instantaneously between two fixed values~random
telegraph signal!, one can show@5# that for an infinitely long
medium this process would be stationary as well as fu
ergodic.

The second random process is the reflection coefficien
a function of the frequency. A particular realization was d
played in Fig. 1 for a finite length medium. Clearly, th
process is not stationary as its ensemble average does de
on the frequency and the data show a preferred origin of
frequency~v50!. Even if we were to subtract out this ave
age value, the processR(v)2^R(v)& still does not qualify
to be called stationary, because the character of the fluc
tions changes with the frequency, i.e., the amplitude of
fluctuations decreases with increasing frequency. There
our system isnot ergodic in the traditional mathematica
sense. If it were, the ensemblê̄ & and frequency
limd→`(1/d)*2d/2

d/2 dv¯ averages should agree exactly wi
each other for any number of slabsN. One can see from Fig
2 that this is not the case, as the numerical agreemen
observed only for local frequency averages aroundvc .

IV. COMPARISON OF THE AVERAGED MAXWELL
SOLUTION WITH THE BOLTZMANN EQUATION

As noted above, the prediction of the Boltzmann equat
for the reflection coefficient is simplymL/(11mL), where
L (5ND) denotes the total length of the medium, which
the number of slabs multiplied by the average distanceD
between them. If the Boltzmann equation is correct, the
must be possible to find an appropriate value for the sca
ing coefficientm, such that the exact ensemble averaged
flection ^R(v)& is identical tomL/(11mL). In other words,
for the Boltzmann theory to be completely accurate, the
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m~v,L ![^R~v!&/$L@12^R~v!&#%. ~4.1!

Now it is crucial to notice that the scattering coefficie
should depend only on averages over truly microsco
quantities, such as the density of scatterers and their ave
index of refraction or width. In principle, of course, it i
always possible to construct an effectivem according to Eq.
~4.1!. However, in order for the Boltzmann equation to
valid, the scattering parameter shouldnot depend on the
length of the mediumL and should be derived by a suitab
averaging over a microscopic region in space only. In ot
words, the derivativeu]m(v,L)/]Lu could be defined as a
quantitative measure for the degree of validity of the Bol
mann equation. We have graphed the ratio of this deriva
andm(v,L) as a function of the frequency but did not fin
the data very useful to characterize the regime in which
Boltzmann equation could be valid.

Instead of using the total reflection coefficient for the m
dium, let us now derive the scattering coefficient from a tru
microscopic analysis. In one dimension the total scatter
cross section can be defined ass tot[uf(1)u21uf(2)u2, where
f (1) and f (2) are the forward and backward scatterin
amplitudes, respectively. This relationship follows from
partial wave decomposition and satisfies the correspond
optical theorem@25#. The anisotropy factor can be obtaine
as g5$cos(0)uf(1)u21cos(p)uf(2)u2%/stot , and using these
two relations it is easily seen thats tot(12g)/25u f (2)u2. In
the literature on the Boltzmann theory@8#, it is often sug-
gested that the scattering coefficientms should be related to
the product of the density of the scatterersr and the average
total cross section̂s tot& of all the individual scatterers,ms
5r^s tot&. We will test this hypothesis below and show how
modified scattering coefficient can improve the agreem
with the exact data obtained from the Maxwell theory.

For identical scatterers, the reduced scattering coeffic
m5ms(12g)/2 is directly related to the reflection coefficien
of a single slab viam5rR(v), where the densityr denotes
the number of scatterers per unit length. This follows imm
diately by relating the complex frequency-dependent refl
tion and transmission amplitudes to the scattering amplitu
via f (1)5t(v)21 andf (2)5r (v). Thus a direct relation-
ship is established between the macroscopic scattering c
ficient and the microscopic variables such as the index
refraction and size of the scatterer.

In Fig. 4 we have graphed the exact Maxwell ensem
averaged reflection coefficient for a medium ofN51000 di-
electric layers together with the prediction of the usu
Boltzmann equation,

RB~v!5rR1~v!L/@11rR1~v!L#, ~4.2!

where the medium’s lengthL5ND and we have used th
exact reflection coefficient of a single slab denoted
R1(v):

R1~v!5U @~12n!/~11n!#$12exp@~2iv/c!nw#%

$12@~12n!2/~11n!2#exp@~2iv/c!nw#%
U2

.

~4.3!
4-6
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The agreement between the exact curve and the usual
zmann prediction is good only for a certain frequency ran

Note that according to the usual Boltzmann theory
scattering coefficient is supposed to be computed from
average cross section of asingle scatterer,m15r1R1 . In
other words, potentially important length scales such as
average spacingD between two or more neighboring scatte
ers are not included. If the computation of the cross sec
is not artificially restricted to a single scatterer but it is ac
ally computed from a slightly larger microscopic cell th
contains several scatterers, then the resulting scattering c
ficient can improve the validity of the Boltzmann equati
significantly for small frequencies.

This is shown by Fig. 5, for which the scattering coef
cient has been calculated numerically from the total refl
tion coefficient forn52, 5, and 10 scatterers, denoted
m2 , m5 , and m10, and with effective densitiesr2
5(N/2)/L, r55(N/5)/L, andr105(N/10)/L. The improved
scattering coefficientsmm now contain the important infor
mation about the average interslab spacingD. As a result, the
agreement with the exact data extends to much smaller
quencies.

One could incorrectly conjecture that the Boltzmann p
diction can be continuously improved if one only increas
the number of slabs in the calculation of the effective sc
tering coefficient. The failure of the Boltzmann theory is n
associated with a ‘‘nonperfect’’ computation ofms , but with
the fact that the total reflection coefficient according to
Boltzmann equation must take the specific functional fo
given by Eq.~4.2!, which requires a very peculiar depe
dence on the medium’s lengthL. If we exaggerate the size o
the microscopic cell to include allN slabs leading toRN , and
rN51/L, correspondingly, we obtainRB5RN /(11RN),
which is inconsistent with the requirementRB5RN . In fact,

FIG. 4. Comparison of the predictions of the Boltzmann eq
tion with the exact reflection coefficient. The various graphs
cording to the Boltzmann equation differ by the size of the mic
scopic cell that has been taken into account to compute the
tering coefficientm. The subscripts indicate the number of sla
over which the microscopic reflection coefficient was comput
~The parameters are as in Fig. 3 except for the number of scatt
N51000.)
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the Boltzmann theory can be improved for small frequenc
as we showed, but it still has its principal limits for larg
frequencies. Independently, we have suggested numeric
that the agreement between Boltzmann and Maxwell theo
can also be improved if the ratio of the slabs’ width to th
spacing is reduced@14#.

V. SUMMARY AND OUTLOOK

We should finish this report with an outlook on futu
work. We note that the medium discussed in this work can
convert a strictly monochromatic input field to incohere
light, in the sense that no new frequencies can be gener
in a linear medium. A strictly monochromatic input field a
ways leaves the medium as fully monochromatic, ev
though with a reduced amplitude. The random medium
act only as a linear frequency filter, in the sense that
reflected intensity at certain frequency components can
reduced in the transmitted or reflected light beams. In ot
words, the infinite coherence length characteristic of a mo
chromatic input field cannot be reduced to a finite value.
a consequence, the Boltzmann equation cannot be expe
to model correctly the response of a monochromatic field
a single medium, for which we have shown that the refl
tion coefficient exhibits extreme oscillatory variations as
function of the frequency.

However, if the input field is only quasimonochromat
with a finite widthd, the frequency averaged reflection coe
ficient will describe the total reflected intensity appropriate
which then—at least in principle—can also be modeled
the Boltzmann equation. We note, however, that the diff
ence between the smallest and the largest frequency com
nents of an input field obviously cannot be increased by
medium.

Let us now return to our long term goal of ‘‘deriving’’ the
Boltzmann equation from the Maxwell equations as me
tioned in the Introduction. One of the basic results of th
work is that the data for the complicated ensemble averag

-
-
-
at-

.
ers

FIG. 5. Same data as in Fig. 4 but for a smaller frequency ran
For small frequencies the Boltzmann theory becomes more suit
for increasing size of the microscopic cell used for the calculat
of the effective scattering coefficient.
4-7



es
a

t

sti

on
fo

tio
te
n
c
o
t

o

ent
ized
e-
ion
it-
ntly

uc-
the

ka.
No.
3-
om
nd

MENON, SU, AND GROBE PHYSICAL REVIEW E68, 046614 ~2003!
this reflection coefficient including all microscopic degre
of freedom can be computed much more efficiently by
average over a single parameter, the laser frequencyv. Using
this knowledge, the first steps toward the goal could be
rewrite the linear Maxwell equations~2.4! in terms of the
right and left going photon fluxesE2(x,1,t) and E2(x,
2,t), respectively. The resulting nonlinear equations are
microscopic, as they contain the random functionv(x). The
strategy would be to ‘‘appropriately’’ average these equati
over a frequency range; then in a certain limit an equation
the averaged fluxes might resemble the Boltzmann equa
Our numerical work certainly suggests that parame
choices exist for which such an agreement could be fou
This derivation would also provide a computational approa
to computing the optimum scattering coefficient from micr
scopic properties as well as correction terms that increase
range of validity of the Boltzmann equation.

Another important question concerns the applicability
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the approach to higher dimensional systems. At the mom
we do not see how our approach can be directly general
to systems of higher dimensions without simplifying symm
tries. The key challenge to deriving the Boltzmann equat
from microscopic principles, however, already manifests
self in one spatial dimension, and we see no reason prese
to unnecessarily complicate our future analysis by introd
ing more spatial dimensions. All these challenges will be
subject of future investigations.
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