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Bridging the microscopic and macroscopic theories for light reflected
from disordered plane-parallel dielectric slabs
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For a system of randomly arranged plane-parallel dielectric layers with randomly varying index of refraction
and width, we compare the reflection coefficient derived from the Maxwell equations with that of the Boltz-
mann theory. For a strictly monochromatic field this coefficient is an oscillatory function of the laser frequency.
We show how suitable frequency or ensemble averaging permits a comparison of the two theories. The
calculation of the usual Boltzmann scattering coefficient from microscopic parameters can be improved to
permit a better agreement with the exact Maxwell data.
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I. INTRODUCTION available[4,5]. As a consequence, it is not clear how to relate
the macroscopic scattering coefficient to the large number of
The propagation of electromagnetic fields through highlymicroscopic variables, such as the spatially fluctuating index
scattering dielectric media is a subject of interest in manyof refraction. Some progress has been reported in this regard
areas of sciencgl—3|. There is a wide variety of applica- In investigating the special case of stationary and homoge-
tions in meteorology, oceanography, medical imaging andieous free fields in the absence of any turbid medit8j.
therapy, astrophysics, radar transmission and reception, 1herefore a better understanding of the relationship be-
semiconductor technology, and photonic devices. The wavdWeen the Boltzmann and Maxwell theories is important.
medium interaction can be described by microscopic or maclVithout too much loss of generality, this problem can be

roscopic theorie§4]. The precise relationship between thesefgproaihiﬂ uznic{ a simple rdntl)\;ljel syﬁtem, f(t)_r which the $|°'
approaches, however, remains an open que&bn utions to the Boltzmann and Maxwell equations are avail-

The microscopic description is exact and requires a de{;\ble. In such a pne—dlmensmnal system the Ilgh.t is r_estrlcted
. . : to scatter only in the forward and backward directions. In
tailed knowledge of the medium, such as the location, th

EFecent work we tried to connect the Boltzmann with the

magnetic waves propagating through a microscopic mediuient for an ensemble average can be related to the predic-

of random scatterers can be analyzed rigorously using thg,ns of the Boltzmann theor}/14,15. The present work is
Maxwell equations. These equations incorporate interferynother step toward this long term goal.

ence, diffraction, and polarization effeds]. However, this In this work we will show that the Maxwell and Boltz-

approach is feasible numerically only for either reduced dimann equations for the one-dimensional system can be

mensional systems such as those with specific symmetries, Bfought into a similar form. These equations have the advan-

small systems that consist of a limited number of scatterergage that perturbative but fully analytical solutions may be
The macroscopic description is provided by the Boltz-compared. We will show that an average of the Maxwell data

mann (radiative transpoytequation. It is regarded in many over a suitable range of the laser frequency leads to a reflec-

areas of science as one of the most fundamental descriptiotisn coefficient that is similar to the one predicted by the

of the transport properties of particles in highly scattering orBoltzmann equation.

collisional media. In areas such as astrophysics and nuclear

physics, the Boltzmann equation models the average motion ||, ForRMAL ANALOGY BETWEEN THE MAXWELL

of real particles sgch as neutrdi@s7]. In me(_jlcal optics, the AND BOLTZMANN EQUATIONS

Boltzmann equation models the propagation of electromag-

netic radiation through highly scattering biological materials ~ Let us first discuss how the time and spatial evolution of a

[8-12. laser field through a one-dimensional highly scattering me-
There are certain length scales at which the Boltzmanglium can be described by the Maxwell as well as the Boltz-

theory is insufficient because some wave or diffraction efnann theories. We will see that these seemingly different

fects are not negligible, but the system is too complicated tdypes of equations can be brought into a similar form if re-

solve the corresponding Maxwell equations. It is this inter-written in terms of coupled equations relating the forward

mediate regime for which there is apparently no theoreticafind backward propagating contributions of the fields.

description available. A major research goal over the last few We start the discussion with the Maxwell theory. The

years has been to find an appropriate description for thidaxwell equations for a position-dependent nonmagnetic di-

mesoscopic regime. In this respect, it is important to noticeelectric mediunjwith permittivity £(r) and permeability ]

that so far the Boltzmann equation can be derived only fronare given by

phenomenological considerations, and its rigorous derivation

even from the basic scalar wave Maxwell equation is not V.e(r)E=0, (2.19
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V-B=0, (2.1b 1 - s !
V XE=—4B/ét, 219 R W
V XB=g(r)uodElot. (2.1d T e 0 0 ]

If the field is normally incident on a medium whose refrac- ]
tive index varies only along the direction, these equations 05 ]
take the forms 1

IBX,)  E,X1) 0"t [
=— . 9.9 -
ot ox (2.23 10
JESxt) 1 aByxt) 2.2 O i e e e o
X)——=— —— .
800 —5¢ w  ox §) 20 40 60 o
aBy(x,t)  JELX,1) FIG. 1. The total reflection coefficient for a single medium con-
ot = ax (2.29 sisting of N=500 dielectric layers with random width, index of
refraction, and location as a function of the frequency. The fre-
GE(x,t) 1 aBy(x,t) quency is displayed in units @fD. The inset shows the small scale
e(Xx R S #, (2.20 oscillations.(The random variables were uniformly distributed in
dt Mo X the ranges;=j D +d/2, n;=1.4+0.1,w;=0.01+0.005,d=D.)

where E, , and B, , are the transverse components of the h E houah th . Il tend £ th
electric and magnetic fields. Full solutions can be obtaine@@P"- Even though there is an overall tendency of the me-

only numerically, using either time-dependent methods fofdium to become more reflective Wi.th in.cre'asing Iasgr fre-
initial value problemg16] or other techniques for boundary quency, the Ia_lrge size of the fluctuations !”d!c?‘tes the impor-
value problemg17] tance of the interferences between the individual scatterers

The model medium whose optical propagation propertiegor strictly monochromatic fields. The inset resolves these
we will examine in this work consists of a seriesfloss- rapid ﬁsct:)illlatifc])ns on a very fineffr%qufency ff‘ﬁf‘ge- l.t is (?uite
; ; I that an increase of the frequeriicy units o
less dielectric slabs arranged along the posikaxis, each remarkable - . _
of which is centered at position, has a widthw;, and an E/D)ofrom (©=9.9212 (with R_0h9788) k;]y Onlg.Aw/]f"
index of refractionn; (j=1,... N). The numerical values —O.?iA: 0w=9.9476 RFO'OOSS) changes the medium from
for the specific parameters were chosen randomly in certaif®ary opaque to nearly transparent,

ranges. The locations of the centers of the slapswere in In order to_com_p_are the Maxwell eqL_Jations with the Bolt-
the range—d/2+ D <x;<jD +d/2, whereD dené)tes the ZMann equation, itis advantageous to introduce the two aux-
J )

average distance between the centers of jithe and iliary fields [19]

+1)th scatterers. Exploring the scale invariance of the Max- .

well equations, we will measure from now on all numerical e I ey

values of the length in units of the distanBe The index Bl +,0= 2{ S(X)Ey(x‘tHBZ(X’t)/\/ﬁ}‘ (239

variation was chosen in the range 4.8;<1.5 and the slab

width w; was in the range 0<lw; /D <0.3. Each particular

realization of theN layers is characterized by the set dfl 3 E(x,—,t)=
random number$x,w,r}. For simplicity, we neglect the ho-

mogeneous dispersion arising from a frequency-dependent

index of refraction; however, due to the spatial dependencé&he wave equation®.2g and(2.2b are equivalent to a set
of the index of refraction, the total reflection depends veryof coupled equationg20,21]

strongly on the frequency.

N| =

{(Ve(OEy(x,) = B,(x,0)/u}. (23D

We assume that the incoming electromagnetic field travels 9 9
perpendicular to the interfaces. This allows us to analyze the (v(x) 5+ P E(x,+,t)
dynamics strictly in one dimension where the scattering
angle is 0° or 180°, and we consider the electric field vector 1 dv(x)
parallel to the slab-vacuum interface. Due to this symmetry, =75 Tdx {E(X,+ O +E(X,—,0)}, (2.49

the problem can be investigated numerically using the trans-
fer matrix approach by matching electric fields at the inter-
faces[18].

The reflection coefficienR(w,{x,w,n}) as a function of
the laser frequencw is shown in Fig. 1. It is an extremely 1 do(x)
oscillatory function of frequency and the reflection is char- __—ouX _
acterized by many interferences, as is apparent from the 2 dx {E(x+ D+EX =0}, (2.4

Jd d
v(X) X E) E(x,—,t)

046614-2



BRIDGING THE MICROSCOPIC AND MACROSCOPIC... PHYSICAL REVIEW &B, 046614 (2003

where v(x)=[uoe(x)] Y2 must be interpreted as the coupling one can derive a useful iterative scheme in which
position-dependent velocity. The form of the generator inthe nth order solution corresponds directly to the photon
Egs. (2.4) suggests thaE(x,+,t) and E(x,—,t) represent paths that have scattereadimes[23]. In this formalism, the
fields propagating along the positive and negativdirec-  parametetu is directly related to the reversal probability.
tions, respectively. E?(x,+,t) and E?(x,—,t) correspond The reflection probability in the steady stat@ {t=0),

to the right and left going photon fluxes, respectively.for a medium of lengthL, can be obtained from Egs.
One can also show that E(x,+,t)+E?(x,—,t) (2.7) using the boundary conditiodgx=0,+)=1 andl(x

= (12)[e(Q)E3(x,1) + (L/p)B2(x,1)] is the energy density =L,—)=0. The reflection coefficient(x=0,—)=puL/[1
andv (X)[ E3(x, +,t) —E%(x, —,t)]= (L) Ey(x,)B,(x,t) is ~ +puL] is the main prediction of the Boltzmann thedd],

the Poynting vector. and we will discuss its implications in Sec. IV.

Let us now show that the Boltzmann equation can be Letus now comment on the formal similarity between the
brought into a similar form. In general, this equation modelsset of two coupled equations according to the macroscopic
the collection of many individual scatterers only by its aver-and microscopic theories of E¢2.4) and Eqs(2.7), respec-
age properties. In the absence of absorption, only three péively. Both equations are linear and have nearly identical
rameters characterize a scattering medium: the propagati@patiotemporal generatotteft hand sides except that the
speed in between two scattering eventshe scattering co- velocity v(x) is a true microscopic quantity rapidly changing
efficient u (the inverse of the scattering lengttand the on the smallest length scale. However, the coupling matrices
scattering phase functiop(Q2,Q’). The last is the condi- on the right hand side are different. In the Maxwell equa-
tional probability that an incoming particle associated withtions, the coupling strength between the right and left going
direction © is scattered into the directiof’. The three- fields is given by the spatial gradient of the velocity
dimensional Boltzmann equatiofradiative transfer equa- (1/2)dv(x)/dx. We also note that the coupling matrix is real
tion) [1] is given by and symmetric with eigenvalues 0 anrd(1/2)dv(x)/dx,
whereas the corresponding<2 coupling matrix for the
Boltzmann theory Egs.(2.7)] is nilpotent with the degener-
ate eigenvalues 0.

The different structures of the two propagators have con-

_ / / rey sequences with respect to the nature of the iterative terms. In
_:U'sf APl QO QL0 —ud (r. 2.1, (29 the Maxwell theory, the field&(x, +,t) and E(x,—,t) can
. . take positive and negative values, and therefore contributions
where I(r,€2,t) represents the local radiation flux density 4qqqciated witmth order scattering can destructively inter-
propagating in the direction. The Boltzmann equation for ¢o .o \ith lower orderg19]. In the Boltzmann theory, the

a one-dimensional medium can be obtained by restricting thgy ctyre of the propagator preserves the sign of the two ra-
scattering phase function to permit only forward and baCk'diation flux densitied (x,+,t) andl(x,—,t), and therefore

ward scattering22]: all nth order scattering contributions add up in an accumu-
lative way.

)
Eﬁ+QV I(r,ﬂ,t)

1
p(Q2,Q")= 4—(1—g)5(cosﬁ+ 1)
™ Ill. FREQUENCY AND ENSEMBLE AVERAGE
OF THE MAXWELL SOLUTION

1
+-—(1+g)dé(cos¥—1), (2.6 . . )
4 Let us now discuss how two different averaging schemes

can convert the oscillatory reflection coefficient displayed in
Fig. 1 for a single medium into a smooth function, which
then permits a direct comparison with the prediction of the
oltzmann equation. In addition to the erratic frequency de-
ndence, the total reflection coefficient for specific realiza-
tion of a single random medium is a function of a set df 3
random number§x, w, r}. In order to eliminate those aspects

where cos9=Q-Q'. The anisotropy factog is defined as
the average cosine of the scattering angl® g
=[dQ'p(Q,Q')cosy. With this bidirectional phase func-
tion, the Boltzmann equation can be expressed as a simp
coupled set of differential equations in spacand timet:

(1 i+ i [(X,+,t)=—ul(X,+,t)+ ul(x,—,1), of the response that vary from specific realization to realiza-
cat ox tion, we can construct a more universal reflection coefficient
(.78 by averaging over all microscopic degrees of freedom ac-
19 9 cording to their probability distribution functiop({x,w,n}):
(E E_ &)|(X,—,t):/,L|(X,+,t)—/JJ(X,—,t),

(2.70 (R(w))=

wh_ere we h_aye defined= us(1—g)/2 as the effective scat- X p({x,W,nHR(w,{X,w,n}). (3.0
tering coefficient and whergx, = ,t) represents the photon

flux along the positive and negatiwedirections. These two We have performed this ensemble average numerically by
equations have an obvious interpretatib(x, +,t) couples computing the average reflection coefficient from 5000 dif-
to 1(x,—,t), and vice versa. By eliminating the diagonal ferent random media, each characterized 5580 indepen-
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FIG. 2. The frequency and ensemble average of the total reflec- FIG. 3. The frequency and ensemble average of the total reflec-

tion coefficient for a medium of the type of Fig. 1. The frequency istion coefficient for a simplified random medium based on the ana-
displayed in units ot/D. The inset shows the two averaged graphs!ytical solutions shown in the Eq¢3.5) and (3.6). For comparison
together with the small scale oscillations characteristic of a singléhe exact reflection coefficient curve is also plotted. The frequency
medium. The dotted line in the graph represents the ensemble alg shown in units ot/D. The scatterers were uniformly distributed
eraged reflection coefficient and the dashed line the frequency aid the rangess;=j D =D/2. All 500 scatterers have an index
eraged result(Same random parameters as in Fig. 1. =1.4 and a widthw=0.01D.

0 _

dent random numbers. The result of this quite CPU consumeomplicated 3l averages can be replaced by an average over
ing task is displayed in Fig. 2. Comparing with the graph ina single parameter, the frequeney This observation can
Fig. 1, we see that all the quasierratic oscillations charactelbbecome relevant for future analytical work on bridging the
istic of a single medium have been removed, and the graphmicroscopic and macroscopic theories on the level of the
suggests that it could even match the average behavior of th@rresponding equations of motion, as we will outline in
reflection coefficient with respect to the frequency. Sec. V.

So far the reflection was calculated for a strictly mono- In order to obtain some analytical insight into this surpris-
chromatic input laser field. In order to compute the responség similarity and to construct an approximate but analytical
of a quasimonochromatic field with a frequency width form of the “universal” reflection coefficient, we have con-
around the center frequenaey,;, we can average the reflec- structed the first order iterative solution to the Maxwell equa-
tion for a single random medium over a small frequencytions. As we will show below, this solution is valid for those
range if the phases of the complex reflection amplitudes varjrequencies for which single scattering is sufficient to de-
sufficiently fast with frequency: scribe the overall reflected light. In other words, this is the

regime in which typically the total reflection coefficient is
less than 5%. The data in Fig. 3 suggest that we would ex-

R(wc,5,{x,w,n})=f do p(w, @, H)R(w,{X,W,n}). pect the single scattering appgroxima?i%n to hold for frequen-
(3.2 cies in the range € w<2.3c/D.

i i i Solving the Maxwell equation$2.4) in the frequency
Please note that this quantity {at least formally still a regime (/at=iw) with the boundary condition&(x=0,
function of all 3N parametergx,w,1} and therefore it could 0)=8(w—w') and E(x=L,—,w')=0, we obtain the

vary from medium to medium. To keep our analysis asfs|ioying amplitude for the reflected light which has experi-
simple as possible, we have assumed that the frequencies alg.qq only a single scattering event:

uniformly distributed, such thatp(w,w:,d)=[0(w— o,
+612)— 6(w— w.— 6/2)]/ 5, whered(- - -) denotes the Heavi-
side unit step function. The frequency average
R(w.,d8,{x,w,n}) was superimposed on the graph on Fig. 2. L
Two important observations are in order. First, the numerical =f dxv'(x)/v(x)

data suggest that the frequency averaging removes the erratic 0

oscillations characteristic of a single random medium. Sec- X

ond, it turns out that for the range of parameters discussed xex;{ —iZwJ dx'/v(x")
here, the two curveR(w., 5,{x,w,n}) and(R(w)) are re- 0
markably similar—if not identical—to each other.

This numerical observation opens the door to finding anaThe integral in the exponeridx’/v(x’) is the time a pulse
lytical solutions to the universal functiofR(w)) and also  of velocity v(x) takes to travel fromx=0 to x without scat-
provides the key for a comparison with the Boltzmann theorytering, such that the exponent in E.3) corresponds to the
as we will discuss in Secs. IV and V. In other words, thephase that the reflected light obtains after having traveled

EV(x=0,—,0)=rY(w)

. (33
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from x=0 to x and back tax=0. The termv’ (x)/v(x) can  =’B*N?/c® In this limit the wavelength 2c/w is larger
be interpreted as a reversal probability at locatioms dis- than the entire medium, and the total reflected intensity is
cussed above. identical for any random arrangementNfscatterers.

In order to obtain simple and illustrative analytical solu- N the large frequency Iig\)it(()d/c.»l.), we obtain that
tions without any loss of generality, let us assume that théhe total reflected intensityR™>(«w)) is given by the sum of
width of each slalw; is very small, such that the medium’s the squared individual electric field amplitudes associated
index of refraction n(x)=1+=N,(nj—1) [@(x—x;  Withreversals atlocations, (RD(w))=w?p?N/c?. In this
+w;/2)— 6(x—x;—w;/2)] can be approximated by(x) limit the wavelength is small enough that the individual lo-
=1+3M (0~ 1)Wer; Ax—X)). Let us also freeze the indi- cations of the scatters can be resolved, but the phases vary so

ces of refractiom;=n and the widthsv,=w, while leaving rapidly from scgttering Ioc?atic2>n 2to gc%tterimg Iocatio.n that the
the center positions of the slabs randomly locatedxat coherent contributions  inw”B%/c2j_ 12, exf2ie[(X;
=jD + ¢, where¢ is a uniformly distributed random number —X;:)+(j—j")B/c] average out to zero fgr# |’ and only the
in the range— d/2< ¢<d/2. These assumptions turn out to diagonal termsj(=j’) contribute.
be not too restrictive, as the basic structure of the graphs in The two intermediate frequency regimes are more diffi-
Figs. 1 and 2 is mainly due to the positions of the slabs angult to interpret. The oscillatory regime requiring 0.1
less due to the fluctuations in the width or the index of re-<Nwd/c and wd/c<0.1 is described by(R™(w))
fraction. ={pBI/(B+D)siNw(B+D)N/c]}2. We should note that this
The effective “width” ws can be related to the true thick- oscillation frequency is identical for each individual
nessw of each slab if we equate the reflection coefficientmedium. In other words, it is independent of the ensemble
for a single slab with the small but finite widt, given  averaging procedure. For even larger frequencies
by (n2—1)%(ww/c)?/4, with the reflection coefficient for (0.1<wd/c) the dependence (R (w))=B%w?N[w?

the &function scatterer, according tdr®(w)[2=(n  —sir¥(wd/c)/d?)/c? is accurate. The fourth power regime fol-
— 1))(Wegw/C)2. We obtain the relatiomvgg=w(n+1)/2. lows trivially from this  expression, (R (w))
Using the above expression fo(x)=c/n(x), the inte- = (1/3)8%d%w?/c*.

gral (3.3 can be calculated, and we obtain the simple form As we have mentioned abovéR™)(w)) is a valid ap-
proximation only if higher order scattering contributions can
N be neglected, i.e., the reflection coefficient is small enough.
r(w,B{x})=w?p2c?2, exg2io(x+]jp)/c], In order to examine the frequency regime of validity of
1= (3.4 (RM(w)), we have compared it in Fig. 3 to the exact total
' reflection intensity (R(w)) (containing all orders The
where we have defingfi=(n— 1)wr=w(n>—1)/2. This so- agr_eement with the analytical curve is valid in all frequency
lution permits us now to calculate the ensemble average d§9imes up tow=2.3c/D and roughly corresponds to

well as the frequency average fully analytically. (R(w))<5%, as suggested above. _ _
The ensemble average defined in Eg.1) can be ob- Let us now analyze the first order reflected intensity ob-
tained as tained from averaging over a range of frequencies. The re-

sulting analytical expression is given by a double sum,
(RY(w))= B2w? c?{N[1-sir?(wd/c)/(wd/c)?]

+sir(wd/c)si(w(D + B)dN/c)/[wd/c
xsin(w(D + B)d)/c]?}. (35 - J do p( .. 8)[FD (o, B.Ax))|2

RY(w,6,{x})

This universal reflection coefficient reveals several interest- = w?B2N/c?+ w?B?/c?
ing features. Four clearly distinct frequency reginiesunits

of ¢/D) can be obtained from Fig. 3. In the small frequency N N ) , o,

limit (w0<1.26x10 %) the reflected intensity grows qua- le. 2 exf2io(x—x))+(j—]")plc]
dratically with the frequency; the next regime (1260 3 RisL

<w<0.251) is characterized by oscillations with equal am- Xsin{ o[ (x;—x{)+ (J— ") BICTH{ 8L (X;—X{)
plitude (=1.58<10 °) and a frequency difference from o

peak to peak of 0.006. In the regime 0.252<3.98, the +(—j"plcl;. 3.6
intensity grows initially with the fourth power of the fre-

quency; and for large frequenci€8.98>w) the intensity In Fig. 3 we have graphed this function for the frequency
again grows quadratically with the frequency. width 6= w./10. The agreement with the analytical form of

The small and large frequency limits suggest a transitiorEg. (3.5) is superb for all frequencies. We should mention
from a fully coherent to an incoherent response of the methat, even though the reflection coefficieRt)(w,,8,{x})
dium. In the small frequency limltw(S+D)N/c<0.1], we  does depend on the frequency widitfor a very small width
obtain that the total reflected intensitiR")(w)) is given by  the fine oscillations characteristic of a single random me-
the square of the sum of the individual electric field ampli-dium are reconstructed, and for a very large width the overall
tudes associated with reversals at locatiens (R(l)(w)> important frequency dependence is averaged out. However,
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we found that there is an intermediate regime, for whichfective scattering coefficient must be

the results for all practical purposes do not depend on the

width 8. p(w,L)=(R(w)){L[1—(R(w))]}. (4.)
We should point out that the close relationship between

the frequency and ensemble average of the reflection coeffgh(')\lucl)év gése(;rgcﬁlto gr?t'gsetgatetsheoig?ttt%'lng rﬁ?ﬁggingc
cient could be interpreted as a weak form of ergodicity. In P Y 9 Y P

statistical mechanici24], a random process(t) is called quantities, such as the density of scatterers and their average

stationary if the ensemble average of any function of themdex of refraction or width. In principle, of course, it is

random variablesz(t,).z(t,).....2(ty) is invariant under a always possible to construct an effectiueaccording to Eq.

time translation. As a special case, the autocorrelation func(—4'1)' However, in order for the Boltzmann equation to be

tion depends only on the difference of the two argument valid, the scattering parameter shouddt depend on the

P ny gumen 1?ength of the mediunk. and should be derived by a suitable
bt fo.r a stationary process. Consequently, the prObab"'tyaveraging over a microscopic region in space only. In other
distribution for the random numbercannot depend on the '

variablet. A stationary random process is generall caIIedwords’ the derivativddu(w,L)/éL| could be defined as a
: Y P 9 y quantitative measure for the degree of validity of the Boltz-

ergodic, if the autocorrelation function decays to zero suffl—rnann equation. We have graphed the ratio of this derivative

ciently rapidly with increasing time. Then all realizations of and u(w,L) as a function of the frequency but did not find

the rgndom process lO.Ok somewhat.5|m|lar aq%dﬁer qnly "the data very useful to characterize the regime in which the
detail, and a suitable time average 4im.(1/T) [ X5,dt- - is Boltzmann equation could be valid,

|dengi:al to the iayerage over all possible realizati¢es- Instead of using the total reflection coefficient for the me-
semble average(--). dium, let us now derive the scattering coefficient from a truly

| HtO.W do (tjhesi rlrtw'\th.emaui:al tdteflnltltCJnfha{:)ply tr? Ourtd"microscopic analysis. In one dimension the total scattering
electric medium= 1t 1S important 10 note thal We have tWo..,qq section can be defined ag=|f(+)|?+|f(—)% where

different random processes involved. The first one is th§(+) and f(—) are the forward and backward scattering

Ilr:Jctuaui?ig n|)r(1denxd(c‘ rrtiafraiztlggn(rﬁ)l’ ‘;Vr;'(é?ﬁ'sr anIL:’nCtllichtiOfn amplitudes, respectively. This relationship follows from a
€ positionx a aries rangomly 10 erent reajizations partial wave decomposition and satisfies the corresponding

.Of the meiiiur{n. For tTe ;in:vslest (iase f(.)f %n incldéx) (tjhat optical theoren{25]. The anisotropy factor can be obtained
jumps instantaneously between two fixed valuemndom . g={cos(0)f(+)|*+cos@@)|f(—)|? /o, and using these
telegraph signa) one can shoy5] that for an infinitely long two relations it is easily seen tha(1—g)/2=|f(—)[2. In

medium this process would be stationary as well as fuIIythe literature on the Boltzmann theofg], it is often sug-

ergodic. ested that the scattering coefficignt should be related to

The_second random process is _the reflect.|on_coeff|C|en.t Rhe product of the density of the scatterprand the average
a function of the frequency. A particular realization was dls-total cross sectioffoy) of all the individual scatterersy.

played in Fig. 1 for a finite length medium. Clearly, this _ . . .
process is not stationary as its ensemble average does depen8<g.‘°‘>' we W'".teSt this h)_/pothess _below and show how a

- modified scattering coefficient can improve the agreement
on the frequency and the data show a preferred origin of the

- . ) With the exact data obtained from the Maxwell theory.
frequency(w=0). Even if we were to subtract out this aver- . : : -
) . For identical scatterers, the reduced scattering coefficient
age value, the proce$¥ w) —(R(w)) still does not qualify

to be called stationary, because the character of the quctuél'i:'U“S.(l_g)/2 Is .directly related to the reﬂectipn coefficient
tions changes with the frequency, i.e., the amplitude of th Of a single slab vig.=pR(w), where the density denotes

fluctuations decreases with increasing frequency. Therefo%;gtglungbe:e?;tisﬁatttﬁ;eggerleuxn'ftréersjgefrr:é TZ': f:rl:g;v:t'rrg;reeg_
our system isnot ergodic in the traditional mathematical tion a)r/1d %/ransmisgsion am Ii?udes t(?the sZatteF;in amplitudes
sense. If it were, the ensemblé--) and frequency P g amp

. 512 .. viaf(+)=t(w)—1 andf(—)=r(w). Thus a direct relation-
lim,_...(1/6) ] 5,dw: -+ averages should agree exactly W'th ship is established between the macroscopic scattering coef-
each other for any number of slahs One can see from Fig.

o . ficient and the micr ic variabl h he index of
2 that this is not the case, as the numerical agreement cient and the microscopic variables such as the index o

b d onlv for local f d Fafraction and size of the scatterer.
observed only for local Irequency averages aroun In Fig. 4 we have graphed the exact Maxwell ensemble

averaged reflection coefficient for a mediumivE 1000 di-

IV. COMPARISON OF THE AVERAGED MAXWELL electric layers together with the prediction of the usual
SOLUTION WITH THE BOLTZMANN EQUATION Boltzmann equation,
As noted above, the prediction of the Boltzmann equation Rg(w)=pRy(w)L/[1+pRy(w)L], 4.2)

for the reflection coefficient is simplyL/(1+ uL), where
L (=ND) denotes the total length of the medium, which iswhere the medium’s length=ND and we have used the
the number of slabs multiplied by the average distabce exact reflection coefficient of a single slab denoted by
between them. If the Boltzmann equation is correct, then iR;(w):

must be possible to find an appropriate value for the scatter-
ing coefficientu, such that the exact ensemble averaged re-
flection(R(w)) is identical touL/(1+ xL). In other words,

for the Boltzmann theory to be completely accurate, the ef-

[(1—n)/(1+n)]{1—exd (2iw/c)nw]} ‘2

Ral) = T —m A+ ) lexd (@i wlonu]}
(@.
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. FIG.' 4. Comparison of _the pred!cpons of the B_oltzmann €48 £1G. 5. same data as in Fig. 4 but for a smaller frequency range.
tion with the exact reflection coefficient. The various graphs ac- : .
. ; . - . For small frequencies the Boltzmann theory becomes more suitable
cording to the Boltzmann equation differ by the size of the micro-; . . X ) . )
. . for increasing size of the microscopic cell used for the calculation
scopic cell that has been taken into account to compute the scat; . - o
; . . . of the effective scattering coefficient.
tering coefficientu. The subscripts indicate the number of slabs

over which the microscopic reflection coefficient was computed. h be i df I .
(The parameters are as in Fig. 3 except for the number of scattere@e Boltzmann t eor}’ Ca,n e |mprovg ,or Sma, requencies
N=1000.) as we showed, but it still has its principal limits for larger

frequencies. Independently, we have suggested numerically

that the agreement between Boltzmann and Maxwell theories
The agreement between the exact curve and the usual Bollan also be improved if the ratio of the slabs’ width to their
zmann prediction is good only for a certain frequency rangegpacing is reducefiL4].

Note that according to the usual Boltzmann theory the
scattering coefficient is supposed to be computed from the
average cross section of single scatterer,u;=p1R;. In
other words, potentially important length scales such as the We should finish this report with an outlook on future
average spacin@ between two or more neighboring scatter- work. We note that the medium discussed in this work cannot
ers are not included. If the computation of the cross sectiogonvert a strictly monochromatic input field to incoherent
is not artificially restricted to a single scatterer but it is actu-light, in the sense that no new frequencies can be generated
ally computed from a slightly larger microscopic cell that in a linear medium. A strictly monochromatic input field al-
contains several scatterers, then the resulting scattering cogfays leaves the medium as fully monochromatic, even
ficient can improve the validity of the Boltzmann equation though with a reduced amplitude. The random medium can
significantly for small frequencies. act only as a linear frequency filter, in the sense that the

This is shown by Fig. 5, for which the scattering coeffi- reflected intensity at certain frequency components can be
cient has been calculated numerically from the total reflecreduced in the transmitted or reflected light beams. In other
tion coefficient forn=2, 5, and 10 scatterers, denoted bywords, the infinite coherence length characteristic of a mono-
M2, ms, and wie, and with effective densitiesp,  chromatic input field cannot be reduced to a finite value. As
=(N/2)/L, ps=(N/5)/L, andp,o=(N/10)/L. The improved a consequence, the Boltzmann equation cannot be expected
scattering coefficientg.,, now contain the important infor- to model correctly the response of a monochromatic field for
mation about the average interslab spadnd\s a result, the  a single medium, for which we have shown that the reflec-
agreement with the exact data extends to much smaller fraion coefficient exhibits extreme oscillatory variations as a
guencies. function of the frequency.

One could incorrectly conjecture that the Boltzmann pre- However, if the input field is only quasimonochromatic
diction can be continuously improved if one only increaseswith a finite width 8, the frequency averaged reflection coef-
the number of slabs in the calculation of the effective scatficient will describe the total reflected intensity appropriately,
tering coefficient. The failure of the Boltzmann theory is notwhich then—at least in principle—can also be modeled by
associated with a “nonperfect” computation pf, but with  the Boltzmann equation. We note, however, that the differ-
the fact that the total reflection coefficient according to theence between the smallest and the largest frequency compo-
Boltzmann equation must take the specific functional formnents of an input field obviously cannot be increased by the
given by Eq.(4.2), which requires a very peculiar depen- medium.
dence on the medium’s length If we exaggerate the size of Let us now return to our long term goal of “deriving” the
the microscopic cell to include all slabs leading t&®y, and  Boltzmann equation from the Maxwell equations as men-
pn=1/L, correspondingly, we obtairRg=Ry\/(1+Ry), tioned in the Introduction. One of the basic results of this
which is inconsistent with the requiremeRg=Ry . In fact,  work is that the data for the complicated ensemble average of

V. SUMMARY AND OUTLOOK
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this reflection coefficient including all microscopic degreesthe approach to higher dimensional systems. At the moment
of freedom can be computed much more efficiently by arwe do not see how our approach can be directly generalized
average over a single parameter, the laser frequentising  to systems of higher dimensions without simplifying symme-
this knowledge, the first steps toward the goal could be tdries. The key challenge to deriving the Boltzmann equation
rewrite the linear Maxwell equation@.4) in terms of the from microscopic principles, however, already manifests it-
right and left going photon fluxe€?(x,+,t) and E?(x, self in one spatial dimension, and we see no reason presently
—,1), respectively. The resulting nonlinear equations are stilto unnecessarily complicate our future analysis by introduc-
microscopic, as they contain the random functiq). The  ing more spatial dimensions. All these challenges will be the
strategy would be to “appropriately” average these equationsubject of future investigations.
over a frequency range; then in a certain limit an equation for
the average_d fluxes might re_semble the Boltzmann equation. ACKNOWLEDGMENTS
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